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Abstract
We investigate adsorption in slit-like pores of model symmetric binary mixtures
exhibiting demixing in bulk phase, by using a density functional approach.
Our focus is on the evaluation of the first-order phase transitions in adsorbed
fluids and the lines separating mixed and demixed phases. The scenario for
phase transitions is sensitive to the pore width and to the energy of adsorption.
Both these parameters can change the phase diagrams of the confined fluid. In
particular, for relatively wide pores and for strong wall–fluid interactions, the
demixing line can precede the first-order transition. Moreover, a competition
between layering transitions and demixing within particular layers also leads
to further enrichment of the phase diagram.

1. Introduction

Single-component fluids confined to micropores can exhibit several types of phase behaviour,
due to the competition between fluid–solid and fluid–fluid interactions, see e.g. [1]. In
particular, the first-order surface phase transitions, such as prewetting and layering, can be
observed in such systems. These phenomena do not have their counterparts in the bulk fluids.
On the other hand, in the case of the usual phase transitions such as condensation and freezing,
the confinement causes shifts of their characteristic parameters and the coexistence lines.

Principal theoretical issues concerning phase transitions in confined fluids are to
understand basic physical phenomena and to determine how the transitions are affected by
the pore geometry and size, by the fluid–pore walls interactions and by the state conditions of
an adsorbate. In addition to solely academic interest, knowledge of the physical chemistry of
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phase transformations is of much importance for applied research. In fact, the investigation of
adsorption of fluid mixtures is more important than of single-component fluids and the number
of theoretical and simulational works dedicated to that problem is very large and growing,
cf [2–16].

Description of phase behaviour of bulk fluid mixtures [17–22], in spite of certain advances,
still remains incomplete in several aspects. Although several possible phase diagram topologies
have been placed into a number of categories [20–22], the knowledge (even within mean-field
type approaches) which microscopic features are responsible for yielding a given category is
far from being satisfactory. The confinement of a fluid must lead to further complications.
Consequently, theoretical description of phase behaviour of confined binary mixtures remains
at its preliminary stage.

The aim of the present study is to present such a description within the framework of
a density functional approach. We use a simple model of a binary mixture. This model is
known in the literature as the so-called symmetric binary mixture model [14, 20, 21, 23].
This model includes two species, i = 1, 2, of equal diameters, σ1 = σ2 = σ (thus it ignores
the influence of the size ratio on the phase behaviour). Additivity of diameters is assumed,
σ12 = 0.5(σ1+σ2) = σ . The interactions between like particles are chosen equal,with identical
functional form (e.g. Lennard-Jones (LJ) potential) and are characterized by the same energy
parameters, ε11 = ε22 = ε. The ‘cross’ interaction potential between unlike particles also
has the same functional form and is characterized by the energy parameter ε12 < ε. The
reduction of the number of parameters permits transparent interpretation of the results, and
allows for establishing clear links between microscopic quantities and the resulting phase
behaviour. We also assume that pore walls are energetically uniform, i.e. the pore walls–fluid
particle potentials depend only on the distance normal to the wall, z. For simplicity and in
order to reduce the number of parameters to a minimum, the fluid–solid potentials are chosen
independent of adsorbate species.

In spite of its apparent simplicity, homogeneous binary symmetric mixtures exhibit quite
interesting thermodynamic behaviour. Of particular importance is the modification of the
coexistence curve for the first-order gas–liquid phase transition by the occurrence of the second-
order demixing transition. If the value of the ratio ε12/ε changes, then an interesting and
nontrivial interplay between the transitions can take place. Wilding et al [21] have proposed
a classification scheme consisting of three types of topology of the phase diagram for such a
simple binary mixture.

It is not known at present how and to what extent each of the types of bulk phase diagrams
is affected by the confinement. The principal objective of our work is to consider that problem.
We shall investigate the phase behaviour of a set of model fluids, confined in slit-like pores.
Those fluids exhibit different demixing in a bulk system. The results obtained here permit us
to discuss general trends and to classify topologies of the phase diagrams for inhomogeneous
binary symmetric mixtures. Undoubtedly, our conclusions on many aspects should remain
valid for cylindrical pores as well. On the other hand, they can serve as an useful benchmark
for further investigations of more sophisticated models with several types of confining walls.

2. The models and theory

The system in question is a two-component fluid of spherical particles of species 1 and 2
interacting via the LJ potential [14, 20, 21, 23], truncated for technical reasons:

ui j(r) =
{

uL J
i j (r), r < ri j,cut

0, r � ri j,cut ,
(1)
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uL J
i j (r) = 4εi j

[(
σi j

r

)12

−
(

σi j

r

)6]
, (2)

where ri j,cut is the cut-off distance. We would like to introduce reduced units from the very
beginning. Throughout this work the parameters σ and ε are chosen as the units of length and
energy, respectively. Then, the reduced temperature is defined as usual, T ∗ = kT/ε. In all
our calculations the cut-off distance was the same for all the components, ri j,cut/σ = 2.5.

The choice of the value of the energy parameter for the LJ potential between unlike
particles, ε12/ε, is crucial. In this work we study three types of models with ε12/ε = 0.75,
0.65 and 0.55. The models are abbreviated as M75, M65 and M55, for the sake of convenience.
In the bulk these models yield three types of phase diagrams described below.

The fluid is confined in a slit-like pore of the width H . Both pore walls, α = 1, 2, are
identical and are characterized by the same potentials, v(z), acting on particles of both species:

v(z) = εgs[(z0/z)9 − (z0/z)3]. (3)

The total gas-pore potential is the sum of the contributions (3) due to two planar walls, located
at z = 0 and H , such that V (z) = v(z) + v(H − z). Without loss of generality, we have
chosen z0/σ = 0.5 for both components. The parameter εgs , in what follows, is measured
in ε units. The model for the adsorption potential is an idealization, in comparison to real
solid surfaces. However, the principal focus of our work is to reveal some general trends of
the phase behaviour of the confined mixture rather than to deal with specific solid substrates.
According to this objective, the number of model parameters has been reduced to a minimum,
as has been mentioned above.

The local densities, ρi (z), of the species i = 1, 2 are computed according to a density
functional approach. In the present study we use the fundamental measure density functional
method, originally derived by Rosenfeld [31], which is known as one of the most accurate
to describe nonuniform fluid mixtures. Because this theory has been described and used in
several publications, see e.g. [31–33], we write down only the final equations. The density
profile equation, obtained by minimizing the excess grand canonical potential:

�ex =
∫

{�[ρ1(z), ρ2(z)] − �[ρb1, ρb2]} dr −
2∑

i=1

∫
dr {µi [ρi (z) − ρbi ] − ρi (z)V (z)}

+
2∑

i=1

∫
dr {[ρi(z) ln ρi (z) − ρi (z)] − [ρbi ln ρbi − ρbi ]}

+ 1
2

2∑
i, j=1

∫
dr

∫
dr′[ρ j(z

′)ρi (z) − ρbjρbi ]u
(att)
i j (|r − r′|), (4)

is

ln[ρi (z)/ρbi ] = − 1

kT

4∑
a=1

∫ {
∂�

∂na(z ′)
−

(
∂�

∂na

)
{ρ(r′)=ρbi }

}
wa(|r − r′|) dr′

− 1

kT

2∑
a=1

∫ {
∂�

∂nva(z ′)
−

(
∂�

∂nva

)
{ρ(r′)=ρbi }

}
wa(|r − r′|) dr′ − V (z)/kT

+
2∑

j=1

∫
dr′ [ρ j (z

′) − ρbj ]u
(att)
i j (|r − r′|). (5)

In the above equation, µi is the configurational chemical potential of the component i , ρbi is
the density of the i th component in a bulk fluid in equilibrium with the confined system, � is
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the free energy functional of hard spheres [31–33],

�/kT = −n0 ln(1 − n3) +
n1n2 − nv1 · nv2

(1 − n3)
+

n2

24π

[n2
2 − nv2 · nv2]

(1 − n3)2
(6)

and the quantities na and nva are the averaged densities, given by the following equations:

na(z1) =
2∑

i=1

∫
dr2 ρi (z2)wa(r12), a = 0, 1, 2, 3 (7a)

nva(r1) =
2∑

i=1

∫
dr2 ρi(r1 + r2)wva(r2), a = 1, 2 (7b)

where wa(r, σ ), a = 0, 1, 2, 3 (scalar quantities) and wva(r), a = 1, 2 (vector quantities) are
the weight functions. The vectorial contribution to the free energy given by equation (6) is zero
for a homogeneous fluid. Explicit expressions for the weight functions are given in [31, 32],
Moreover, u(att)

i j (r) denotes the attractive part of the LJ potential (1), defined as common
according to the Weeks–Chandler–Andersen scheme [34]:

u(att)
i j (r) =

{
−εi j , r < ri j,min

ui j(r) r � ri j,r min,
(8)

where ri j,min = 21/6σ . Moreover, the hard-sphere density functional has been evaluated
assuming the hard-sphere diameters are equal to σ . The parameter σ is chosen as a unit of
length in what follows.

The relationship between µi and ρbi is

µi/kT = − ln(1 − n3) + (σ/2)n2/(1 − n3) + (σ/2)2[n1/(1 − n3) + (1/8π)n2
2/((1 − n3)

2)]

+ (σ/2)3[n0/(1 − n3) + n1n2/(1 − n3)
2 + (1/12π)n3

2/(1 − n3)
3]

+
∑
j=1,2

ρbj

∫
dr uatt

i j (r), (9)

where the average densities are calculated according to equation (7) with local densities equal
to the bulk densities. We also introduce the symbol x to abbreviate the bulk fluid composition,
x = ρb1/ρb, where ρb = ρb1 + ρb2 is the total bulk fluid density. The dimensionless bulk
density is ρb.

The method of solution of the density profile equation, equation (5), applied by us, is based
on a standard iteration procedure. All the integrations have been carried out using Simpson’s
method with a grid size of 0.01σ .

The knowledge of the density profiles allows us to calculate the excess grand
thermodynamic potential, �ex , as well as the adsorption isotherm of species i , 	i , as functions
of the chemical potentials of two components of the binary mixture in question:

	i =
∫ H

0
dz ρi(z). (10)

The total isotherm is the sum of individual adsorptions, 	 = 	1 + 	2. We also define the
average density in the pore, 〈ρ〉 = 	/H and the selectivity, S = 	1/	. However, all the
results presented below have been obtained for an equimolar bulk fluid composition, i.e. for
x = 0.5. In other words the chemical potential of both species has been identical, µ2 = µ1,
and thus βµ1 is the only independent variable. It will be denoted by βµ in what follows.
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3. Results and discussion

First we would like to comment on the phase diagrams of the binary symmetric model mixtures
considered in this work, i.e. M75, M65 and M55. Those phase diagrams serve as references
for the further study of inhomogeneous fluids.

In each case the bulk phase diagram has been calculated according to the same procedure
as that used for confined fluids (i.e. by minimizing � with respect to the total density of the
mixture and to its composition, x , with external field switched off, however). In this work,
we minimize � with respect to density at fixed equimolar composition. The T ∗–ρ projections
of the bulk phase diagrams for an equimolar composition of the gas phase are shown in
figure 1. The λ-line of second-order transitions between mixed and demixed fluids is given
by the dotted line in each panel. The position of that line, with respect to the envelope of the
first-order transitions, mainly depends on the energy of the cross interaction. For the system
with the highest energy of the cross interaction (model M75), the λ-line enters the coexistence
envelope quite far below the liquid–vapour critical point. The critical end point (CEP) then
appears. At the temperatures below the CEP a mixed vapour coexists with a demixed liquid.
In the case of the strongest demixing, i.e. for model M55, the coexistence between a mixed
vapour phase and demixed fluid terminates at a tricritical point. For an intermediate value of
the cross interaction, i.e. for system M65, the phase diagram is characterized by the presence
of a triple point and a tricritical point as well. A complete discussion of those three types of
topology of the bulk phase diagrams can be found in the recent work by Wilding et al [21]. In
all panels of figure 1 we have also included the lines representing the solutions leading to the
metastable transitions between two different mixed phases, which are marked by chain curves.

We begin the discussion of nonuniform systems with the model fluid M75, confined to the
pores of different width (H = 5 and 15) with attractive walls of moderate strength, εgs/ε = 8.
The construction of the phase diagram requires the calculation of the isotherms and of the
excess grand thermodynamic potential, �ex (as functions of βµ1). The location of the first-
order transition at each temperature is determined by the crossing point of two branches of �ex ,
corresponding to the two coexisting phases. Some examples of the plots of β�ex for the pore
H = 15 are given in figure 2(a). The line with dark symbols corresponds to demixed states of
the mixture. The corresponding adsorption isotherms are shown in figure 2(b). In general, the
adsorption isotherms exhibit hysteresis. However, metastable parts of the isotherms have been
discarded and only jumps resulting from the first-order transitions (capillary condensation of
a mixture in the pore) are shown in figure 2(b). Two solutions of the equation for the density
profiles describe two phases of different density and composition. An example of the changes
of the density profiles upon the capillary condensation transition is shown in figure 3.

At the temperature, T ∗ = 1.0, the confined fluid also undergoes the second-order demixing
transition, in addition to capillary condensation. The branch of β�ex describing states with
S �= 0.5 is stable with respect to the branch for S = 0.5, see the line with symbols in figure 2(a).
This transition occurs at the chemical potential higher than the bulk coexistence and hence the
relevant curve in figure 2(a) is cut and consists of two disconnected parts. The corresponding
part of the adsorption isotherm shows higher adsorption for the selectivity S �= 0.5. It is
important that the branches of the isotherm corresponding to S �= 0.5 and S = 0.5 meet
tangentially at the transition point of the λ-line.

The phase diagrams resulting from the analysis described above are displayed in figure 4,
which also presents the bulk phase diagram as a reference. The narrowing of a pore results
in shrinking the coexistence envelope and lowering the critical temperature of the capillary
condensation and also lowering the CEP. However, the inclination of the λ-line remains
practically unchanged for the two confined systems and the bulk.
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Figure 1. Bulk phase diagrams for three model systems investigated. The composition along the
vapour branch is 0.5. Chain curves correspond to metastable states between two mixed phases.
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Figure 2. Illustration of the method of construction of the phase diagrams for confined systems.
Part (a) shows the dependence of the excess grand potential on the configurational chemical potential
and part (b) shows the adsorption isotherms. In the case of a first-order transition, the two branches
of β�ex intersect, while in the case of the second-order demixing transition, shown in the inset,
they meet together tangentially. Note that the grand potential scale of the inset is changed. The
calculations have been carried out for a M75 fluid in the pore of H = 15 and εgs = 8. Curves with
symbols denote the values of β�ex and 	 for a demixed confined fluid.

In the case of a stronger fluid–solid interaction, εgs = 11, the effects of the confinement are
similar to those described above. However, a low density branch of the coexistence envelope
shows a new feature at sufficiently low temperatures (figure 5(a)). For a wide pore of H = 15
one observes the first-order layering transition with a well defined critical point, while for a
narrower pore of H = 5, only a non-monotonic change of the coexistence line is a remnant
of that transition. Also, the transition between mixed and demixed phases shifts slightly to
a higher density as the pore becomes narrower. Capillary condensation occurs at chemical
potential values below the bulk coexistence, see figure 5(b). This figure also shows that the
layering transition is present for the pore H = 15 and persists for a pore of H = 10. The
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0 5 10 15
z

0

1

2

ρ 1(
z)

Figure 3. The equilibrium density profile for component 1, ρ1(z), for coexisting phases in the pore
of H = 15 and εgs = 8 at T ∗ = 0.9 (curves) and T ∗ = 1.0 (curves with full circles). Full and
broken curves are the profiles after and before the capillary condensation, respectively.

0 0.2 0.4 0.6 0.8
ρb,<ρ>

0.6

0.8

1

1.2

T
*

Bulk
H=5, εgs=8
H=15, εgs=8

Figure 4. A comparison of the phase diagrams for model M75 in a slit-like pore of the width
H = 15 (empty symbols) and H = 5 (full symbols) and in the bulk (curves). The adsorption
potential is characterized by εgs = 8. Asterisks indicate the CEPs.

layering transitions are the features characteristic for adsorption at a single wall and thus they
become suppressed in sufficiently narrow pores. The second-order demixing transition occurs
practically at the same values of the chemical potential for both the bulk and confined systems.

The increase of the adsorption energy,up to εgs = 15, introduces qualitatively new features
to the phase behaviour of the confined M75 fluid (see figures 6(a) and (b)). In particular, for both
pores of H = 10 and 15 the demixing lines start at the low density side of the coexistence curve
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Figure 5. Part (a) the T ∗–ρ projection, and part (b) the T ∗–βµ projection of the phase diagram
for the fluid M75 in the pores (symbols) and in the bulk (curves). The adsorption potential is
characterized by εgs = 11. The nomenclature of the symbols is given in the figure.

and enter the following parts of the phase diagram, corresponding to the layering transition and
capillary condensation. Those lines meet the first-order coexistence at the CEPs marked by
the asterisks. The difference between the pores of H = 10 and 15 results from the changes in
the low density parts of the phase diagrams, associated with the layering transitions and with
the locations of the triple points. The position of the low density part of the λ-line shifts when
the pore width changes substantially, while the high density part of that line remains almost
unchanged. The selectivity changes along the phase boundaries of demixed phases for the case
of H = 15 are shown in figure 6(c) where each branch terminates at equimolar selectivity.
The labels for the terminating points in this figure coincide with those given in figure 6(b).
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Figure 6. Parts (a) and (b): the T ∗–ρ projections, and (c): the T ∗–S projection of the phase
diagrams for the fluid M75 in the pores (symbols) and in the bulk (curves). The adsorption potential
is characterized by εgs = 15. The nomenclature of the symbols is given in the figure. The white
and dark symbols refer to the first-order transitions and λ-line, respectively. Asterisks indicate the
CEPs, which are labelled in parts (b) and (c) with the numbers 1, 2, 3 and 4.

(This figure is in colour only in the electronic version)
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Figure 7. The T ∗–ρ projections of the phase diagrams for the fluid M65 in the pores (symbols)
and in the bulk (curves). Parts (a) and (b) are for different pore widths, indicated in the figure. The
adsorption potential is characterized by εgs = 15. The nomenclature of the symbols is given in the
figure. Asterisks indicate the CEPs.

The next figures, figures 7(a) and (b), demonstrate the phase diagrams for model M65
confined in pores with strongly attractive walls (εgs = 15) of different widths. This model
is characterized by stronger demixing, in comparison to model M75, and consequently the
multiplicity of the CEPs of the λ-line is observed for narrow pores only, H = 5 and 7. In
particular, in the case of H = 7 the upper CEP almost coincides with the critical temperature.
For even narrower pores, the type of phase diagram changes from the second to the third
class [21], characterized by the absence of a critical point and the presence of the tricritical
point. However, for wider pores (H = 10 and 15) the demixing line is continuous and entirely
separated from the coexistence envelopes for the first-order transitions, within the temperature
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range investigated. Concerning the λ lines and capillary condensation the type of topology of
the phase diagrams has not been observed for the bulk models.

The first-order first layering transitions are observed for all cases in question. For wider
pores the second layering transition exists as well. For the widest pore studied, the upper part
of the capillary condensation envelope for the coexistence between demixed phases weakly
splits into two branches. This implicitly shows that condensation occurs in two stages. The
first stage is the layering transition involving condensation within the third and fourth layer
simultaneously, while the second results from the filling of the remaining part of the pore.

The last part of our study has been carried out for model M55. This fluid exhibits the
strongest demixing and its bulk phase diagram belongs to the third class. Figure 8 shows
examples of the phase diagrams obtained for pores of the width H = 10 and 20 and of
different strength of the fluid–solid interaction. For sufficiently low values of εgs , εgs = 5, the
phase diagrams for the confined fluid are topologically the same as for the bulk. The envelopes
end at the tricritical points whose temperatures decrease very slightly with the decrease of the
pore width. On the other hand, when the fluid–wall interaction energy becomes sufficiently
strong, εgs = 15 (cf figure 8(b)) the topology of the phase diagrams changes. There appears a
sequence of first-order layering transitions. The λ-line starts at the tricritical point of the first
layering transition and is completely separated from the other parts of the phase diagram. As a
consequence the capillary condensation transition terminates at a critical point, rather than at
the tricritical point characteristic for the bulk and for the pores with weakly adsorbing walls.
The identification of the particular phases in figure 8(b) is not trivial and requires a careful
inspection of the density profiles and thermodynamic quantities. Figures 9 and 10 give just
an example of such an analysis. The results presented here have been obtained for H = 10
and at T ∗ = 0.7 (i.e. very slightly above the triple point temperature between the second
layering transition and the capillary condensation). Figure 9 presents a part of the adsorption
isotherm, which shows the second layering transition and the capillary condensation, and the
corresponding excess grand canonical potential. Figures 10(a) and (b) illustrate the changes
in the structure of the confined fluid. Full and dotted curves are the profiles evaluated at the
chemical potential just below and above the second layering transition, respectively, whereas
the broken lines represent the condensed fluid filling the entire pore. Note that the amount of
the second component (figure 10(b)) in that condensed phase is considerably lower than the
amount of the first component (figure 10(a)).

4. Conclusions

We have investigated the adsorption of symmetric binary mixtures, which exhibit three types
of bulk phase behaviour. Our observations regarding the types of the phase behaviour are the
following. In the case of weak fluid–solid interactions the phase diagrams can exhibit:

(1) Mixed gas to mixed liquid first-order transition at higher temperatures, that terminates
at the critical point and mixed gas to demixed liquid first-order transition at lower
temperatures. There exists a triple point temperature, separating the above two regimes.
This type of behaviour can be observed in narrow and wide pores.

(2) The first-order transition between two mixed phases disappears and the corresponding
triple point disappears. We have the first-order transition between mixed gas and demixed
denser fluid with a tricritical point. Such phase behaviour exists in narrow, as well as in
wider, pores, dependent on the value of adsorption energy.

In the case of strong fluid–solid interactions we have found:
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Figure 8. The T ∗–ρ projections of the phase diagrams for the fluid M55 in the pores (symbols)
and in the bulk (curves). Parts (a) and (b) are for different pores, indicated in the figure. The
nomenclature of the symbols is given in the figure.

(1) In addition to capillary condensation, layering phase transitions between either mixed–
mixed, mixed–demixed or demixed–demixed, two phases of relatively low average
densities can be found at low temperatures.

(2) The λ-type line can join the first-order transitions (layering or capillary condensation) at
CEPs. Multiplicity of the CEPs has been observed for the first time.

(3) The λ-line can decouple from the capillary condensation part of the phase diagram for
sufficiently wide pores.

Assessing the significance of the above results one should remember that they have been
obtained within the density functional theory that is based on a mean field approximation.
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for β�ex correspond to mixed phases which are metastable with respect to demixed phases (full
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0 2 4
z

0

2

4

6

8

ρ 1(
z)

0 2 4
z

0

0.05

0.1

0.15

0.2

ρ 2(
z)

a b

Figure 10. The density profiles, ρi (z), of species 1 (part (a)) and 2 (part (b)) for coexisting phases
at the transition points shown in figure 9. Full and dotted curves are the profiles just before and
after the second layering transition, respectively. Broken curves are the profiles after the capillary
condensation.



Phase behaviour of symmetric binary mixtures with partially miscible components in slit-like pores 2283

Other types of phase behaviour are possible as well even for the model mixtures considered
in this work. In particular, we have not included the possible influence of wetting on the phase
behaviour of a fluid confined in a pore. In particular, we have not explored the possible
interplay relation between wetting properties of a single wall and phase behaviour of the
same fluid mixture in narrow pores, which can be established by considering very wide pores
and performing systematic changes of the interaction energy between solid walls and fluid
components. Here we only state that, in the case of weakly adsorbing walls, the phase diagrams
plotted in the selectivity–temperature plane are similar for all investigated pores. In this case,
the effect of the confinement is quite usual and a decrease of the pore width causes the shift of
the entire phase diagram down the temperature axis. However, for higher adsorbing potentials
the phase diagram can be changed.
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